Riassunto

OBIETTIVI: valutare e validare l’uso di un algoritmo finalizzato a identificare, tramite le schede di dimissione ospedaliera (SDO), casi con malformazioni congenite (MC) alla nascita e/o segnalati in ricoveri entro il primo anno di vita utilizzando come gold standard il Registro delle malformazioni congenite della ASL di Mantova (RMC-MN) che controlla tutte le cartelle cliniche dei nati da madri residenti nella provincia.

DISEGNO: è stato impiegato un algoritmo disegnato per l’identificazione dei casi malformati nel flusso SDO utilizzando due moduli, uno per identificazione dei casi potenzialmente malformati e uno per la loro validazione. È stato, poi, effettuato un confronto dei risultati con quelli osservati dal RMC-MN.

SETTING E PARTECIPANTI: dati delle SDO e del RMC-MN per il periodo 2010-2011, relativi a casi rilevati in nati entro il primo anno di vita nella popolazione residente in provincia.

RISULTATI: su 8.042 nati da madri residenti in provincia di Mantova, 7.367 sono stati esclusi dall’algoritmo come non malformati con l’esclusione di 1 solo falso negativo (valore predittivo negativo – VPN: 99,99%); nei rimanenti 675 casi (8,4%) era presente almeno un codice di malformazione congenita. L’algoritmo ha poi escluso 396 casi (4,9%) con malformazioni minori isolate o con patologie considerate non malformative, di cui 23 erano falsi negativi (VPN: 94,2%). Nei rimanenti 279 casi potenzialmente malformati l’algoritmo ha considerato validati 169 casi (60,6%), di cui 11 falsi positivi (valore predittivo positivo – VPP: 93,5%). Nei restanti 110 casi da valutare, 46 sono risultati veri positivi (VPP 41,8%).

CONCLUSIONI: lo strumento proposto ha permesso di identificare correttamente nelle SDO l’89,4% dei casi registrati dal RMC-MN, di produrre un numero ridotto di falsi positivi tra i casi validati (6,5%) e di escludere efficacemente i casi inappropriati (94,2%). Gli autori suggeriscono un uso oculato e guidato da esperti di SDO, di clinica e di epidemiologia delle malformazioni congenite.

 Parole chiave: , , ,

Abstract

OBJECTIVES: to evaluate and validate the use of an algorithm designed to identify in hospital discharge records (SDO) cases with congenital malformations (MC) at birth and/or reported in hospitalizations within the first year of life using as gold standard the Congenital malformation Registry of the Local Health Unit of Mantova, Northern Italy, (RMC-MN), which controls all the medical records of infants born to mothers living in the province.

DESIGN: an algorithm designed for the identification of malformed cases in the SDO database using two modules, one for identification of cases potentially malformed and one for their validation was used. A comparison of the results with those observed by the RMC-MN was then conducted.

SETTING AND PARTICIPANTS: data of the SDO and the RMC-MN for the period 2010-2011 relative to those detected in newborns within the first year of life in the resident population in the province.

RESULTS: of 8,042 infants born to mothers residing in the province of Mantova, 7,367 were excluded by the algorithm as malformed with the exception of only one false negative (negative predictive value – NPV: 99.99%); in the remaining 675 cases (8.4%) there was at least one code of congenital malformation. The algorithm has also included 396 cases (4.9%) with isolated minor malformations or diseases considered not malformations, of which 23 were false negatives (NPV: 94.2%). In the remaining 279 cases potentially malformed the algorithm considered as validated 169 cases (60.6%), including 11 false positives (positive predictive value – PPV: 93.5%). In the remaining 110 cases to evaluate, 46 were true positives (PPV: 41.8%).

CONCLUSIONS: the proposed instrument has identified correctly SDO in 89.4% of cases registered by the RMC-MN to produce a small number of false positives among the validated cases (6.5%) and effectively exclude inappropriate cases (94.2%). The authors suggest a judicious use of the instrument, which should be led by experts of SDO, clinical and epidemiology of congenital malformations.

 Keywords: , , ,

 

          Visite