OBIETTIVI: valutare e validare l’uso di un algoritmo finalizzato a identificare, tramite le schede di dimissione ospedaliera (SDO), casi con malformazioni congenite (MC) alla nascita e/o segnalati in ricoveri entro il primo anno di vita utilizzando come gold standard il Registro delle malformazioni congenite della ASL di Mantova (RMC-MN) che controlla tutte le cartelle cliniche dei nati da madri residenti nella provincia.
DISEGNO: è stato impiegato un algoritmo disegnato per l’identificazione dei casi malformati nel flusso SDO utilizzando due moduli, uno per identificazione dei casi potenzialmente malformati e uno per la loro validazione. È stato, poi, effettuato un confronto dei risultati con quelli osservati dal RMC-MN.
SETTING E PARTECIPANTI: dati delle SDO e del RMC-MN per il periodo 2010-2011, relativi a casi rilevati in nati entro il primo anno di vita nella popolazione residente in provincia.
RISULTATI: su 8.042 nati da madri residenti in provincia di Mantova, 7.367 sono stati esclusi dall’algoritmo come non malformati con l’esclusione di 1 solo falso negativo (valore predittivo negativo – VPN: 99,99%); nei rimanenti 675 casi (8,4%) era presente almeno un codice di malformazione congenita. L’algoritmo ha poi escluso 396 casi (4,9%) con malformazioni minori isolate o con patologie considerate non malformative, di cui 23 erano falsi negativi (VPN: 94,2%). Nei rimanenti 279 casi potenzialmente malformati l’algoritmo ha considerato validati 169 casi (60,6%), di cui 11 falsi positivi (valore predittivo positivo – VPP: 93,5%). Nei restanti 110 casi da valutare, 46 sono risultati veri positivi (VPP 41,8%).
CONCLUSIONI: lo strumento proposto ha permesso di identificare correttamente nelle SDO l’89,4% dei casi registrati dal RMC-MN, di produrre un numero ridotto di falsi positivi tra i casi validati (6,5%) e di escludere efficacemente i casi inappropriati (94,2%). Gli autori suggeriscono un uso oculato e guidato da esperti di SDO, di clinica e di epidemiologia delle malformazioni congenite.