Epidemiologia&Prevenzione 2019, 43 (4) luglio-agosto Suppl. 2

A Systematic Review of Case-Identification Algorithms Based on Italian Healthcare Administrative Databases for Three Relevant Diseases of the Digestive and Genitourinary System: Inflammatory Bowel Diseases, Celiac Disease, and Chronic Kidney Disease

Riccardo Di Domenicantonio, Giovanna Cappai, Nerina Agabiti, Claudia Marino, Lorenzo Simonato, Cristina Canova, Gisella Pitter

OBIETTIVI: identificare e descrivere tutti i lavori pubblicati negli ultimi 10 anni che, utilizzando flussi amministrativi sanitari (FAS) italiani, hanno elaborato almeno un algoritmo originale per l’identificazione di soggetti affetti da malattie infiammatorie croniche dell’intestino (MICI), malattia celiaca (MC) e malattia renale cronica (MRC).

METODI: questo studio si inserisce all’interno di un progetto di 16 revisioni sistematiche per la valutazione dello stato dell’arte degli algoritmi per l’identificazione di 18 patologie acute e croniche. La revisione, effettuata da due revisori indipendenti, mira a identificare articoli originali pubblicati tra il 2007 e il 2017 in inglese o italiano, individuati su PubMed mediante una stringa di ricerca costituita sia da testo libero che da termini MeSH, con una parte comune a tutte le patologie e una parte specifica per patologia. I lavori pertinenti sono stati classificati a seconda dell’obiettivo per cui ciascun algoritmo è stato utilizzato e si sono estratti i dati solo dagli algoritmi con obiettivi primari (I occorrenza di malattia, II selezione di coorti/popolazioni, III identificazione di esito). I criteri di esclusione sono stati i seguenti: assenza di una descrizione degli algoritmi riportati; sviluppo dell’algoritmo al di fuori del contesto italiano; uso esclusivo di: certificate di morte, registri di patologia, dati dei medici di medicina generali o dei pediatri di libera scelta. Le informazioni estratte per caratterizzare e confrontare gli algoritmi originali sono: i FAS utilizzati (schede di dimissione ospedaliera, prescrizioni farmaceutiche, etc.), i codici ICD-9 e ICD-10, la selezione dei farmaci secondo il sistema di classificazione ATC, i criteri di identificazione dei casi, il periodo di osservazione/followback, i criteri di selezione anagrafica applicati ed eventuali validazioni esterne con le relative misure di accuratezza (sensibilità, specificità, valori predittivi) riportate.

RISULTATI: la stringa di ricerca ha portato all’identificazione di 98, 42 e 390 articoli, rispettivamente per MICI, MC e MRC, con l’aggiunta dai riferimenti bibliografici di un articolo per le MICI. Alla fine del processo di selezione, sono stati identificati 5 lavori pertinenti per le MICI, 9 per la MC e 8 per la MCR. Nell’ambito degli articoli su MICI e MC sono stati applicati criteri specifici per la selezione della popolazione pediatrica e dei giovani adulti, mentre per la MRC la maggior parte dei lavori ha considerato la popolazione adulta. Sono stati estratti dagli articoli e caratterizzati tre algoritmi per MICI, 4 per la MC e 5 per la MRC. I dati relativi alle prescrizioni farmaceutiche sono stati utilizzati sia negli algoritmi per l’identificazione delle MICI che della MRC, mentre sono stati considerati sia le esenzioni che i ricoveri per MICI e MC. I referti di anatomia patologica e le prestazioni ambulatoriali sono state utilizzate, rispettivamente, per l’identificazione della MC e della MRC. Per ciascuna patologia, solamente in un algoritmo è stato applicato un criterio per l’esclusione dei casi prevalenti. Un solo algoritmo, sviluppato per la malattia di Crohn, nell’ambito delle MICI, è stato oggetto di validazione.

CONCLUSIONE: gli elementi emersi dalla revisione indicano che l’identificazione delle MICI e della MC attraverso l’uso dei FAS può essere ritenuta affidabile e può essere utilizzata per condurre diversi tipi di studi epidemiologici. Differentemente per la MRC, è necessario lo sviluppo di ulteriori approcci, mirati principalmente a migliorare la capacità di identificazione dei pazienti con forme precoci della patologia.

epiprev.it Epidemiologia & Prevenzione
0